If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4=40
We move all terms to the left:
2x^2+4-(40)=0
We add all the numbers together, and all the variables
2x^2-36=0
a = 2; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·2·(-36)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*2}=\frac{0-12\sqrt{2}}{4} =-\frac{12\sqrt{2}}{4} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*2}=\frac{0+12\sqrt{2}}{4} =\frac{12\sqrt{2}}{4} =3\sqrt{2} $
| u/8+11.5=-1.3 | | -4x-9-9=180 | | -1/5+p=1/10 | | -35=-7/2u | | 10x-1=63 | | y÷17 9=3 4 | | -4/9u=28 | | x2−7x+12=0 | | 15r-9-10=26 | | 24=x/3969•703 | | y/16/9=3/4 | | 3x+8=6-28 | | 6(x+5)=12(x-3) | | 5(4t+3)=4(7t-5)+3(9-2t) | | 8a-2=12+a2 | | F(x)=7x^2+5x-3 | | 2c+3=3c-14 | | 3x+8x-11=2x+5 | | 5x2-2x-39=0 | | 6x-7=8x+3 | | 6(2x+3)=9(1x-2) | | -r=-7–2r | | -2x+3+8x=-33 | | 8=-2(-10+k) | | 5x+55=8x-5 | | -2x^2+30=70 | | 0.25/3=x/1.5 | | 2m+3m=-15 | | -2y-12=52 | | 3x+4=6x19 | | 8=s+15 | | 3x^2-10=14 |